Finite deformation mechanics in buckled thin films on compliant supports.

نویسندگان

  • Hanqing Jiang
  • Dahl-Young Khang
  • Jizhou Song
  • Yugang Sun
  • Yonggang Huang
  • John A Rogers
چکیده

We present detailed experimental and theoretical studies of the mechanics of thin buckled films on compliant substrates. In particular, accurate measurements of the wavelengths and amplitudes in structures that consist of thin, single-crystal ribbons of silicon covalently bonded to elastomeric substrates of poly(dimethylsiloxane) reveal responses that include wavelengths that change in an approximately linear fashion with strain in the substrate, for all values of strain above the critical strain for buckling. Theoretical reexamination of this system yields analytical models that can explain these and other experimental observations at a quantitative level. We show that the resulting mechanics has many features in common with that of a simple accordion bellows. These results have relevance to the many emerging applications of controlled buckling structures in stretchable electronics, microelectromechanical systems, thin-film metrology, optical devices, and others.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling of a stiff thin film on a compliant substrate in large deformation

A finite-deformation theory is developed to study the mechanics of thin buckled films on compliant substrates. Perturbation analysis is performed for this highly nonlinear system to obtain the analytical solution. The results agree well with experiments and finite element analysis in wavelength and amplitude. In particular, it is found that the wavelength depends on the strain. Based on the acc...

متن کامل

Delaminated Film Buckling Microchannels

This chapter describes the method of manufacturing microfluidic microchannels formed by delaminated buckled thin films. Thin films under compression tend to delaminate and buckle. Microchannel geometry can be controlled by tailoring film residual stress and placing patterned adhesion-weakening layers utilizing photolithographic techniques. Results based on the photoresist as the adhesion weaken...

متن کامل

Effects of nanoscale thickness and elastic nonlinearity on measured mechanical properties of polymeric films

Scanning probe microscope-enabled nanoindentation is increasingly reported as a means to assess the mechanical properties of nanoscale, compliant material volumes such as polymeric films and bio-membranes. It has been demonstrated experimentally that the Hertzian contact model developed for linear elastic materials of semi-infinite thickness fails to accurately predict the nominal elastic modul...

متن کامل

Channel cracking in thin films on substrates of finite thickness

Solutions are presented for the elastic plane-strain problem of a crack in a coating on a compliant substrate of finite thickness. Analysis of the problem shows that substrate thickness has a significant effect on the steady-state energy release rate for channel cracks. This is so over a wide range of elastic mismatch between film and substrate, but is especially important if the substrate is m...

متن کامل

An Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams

Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 40  شماره 

صفحات  -

تاریخ انتشار 2007